miércoles, 9 de septiembre de 2009

Aplicaciones


Ya hemos visto cómo funciona el GPS y cuál es su función principal: conocer nuestra posición.
Aunque conocer nuestra posición pueda parecer algo trivial, cada vez más se está convirtiendo en un aspecto casi imprescindible en muchos campos, ya sean profesionales o lúdicos. A grandes rasgos, podemos dividir los campos de aplicación en cinco.


Posicionamiento: la aplicación más obvia del GPS es la de determinar una posición o localización. El GPS es el primer sistema que permite determinar con un error mínimo nuestra posición en cualquier lugar del planeta y bajo cualquier circunstancia.


Navegación: dado que podemos calcular posiciones en cualquier momento y de manera repetida, conocidos dos puntos podemos determinar un recorrido o, a partir de dos puntos conocidos, determinar la mejor ruta entre ellos dos.


Seguimiento: mediante la adaptación del GPS a sistemas de comunicación, un vehículo o persona puede comunicar su posición a una central de seguimiento.


Topografía: gracias a la precisión del sistema, los topógrafos cuentan con una herramienta muy útil para la determinación de puntos de referencia, accidentes geográficos o infraestructuras, entre otros, lo que permite disponer de información topográfica precisa, sin errores y fácilmente actualizable.


Sincronización: dada la característica adicional de medición del tiempo de que disponen los receptores GPS, podemos emplear este sistema para determinar momentos en los que suceden o sucederán determinados eventos, sincronizarlos, unificar horarios...

Como funciona el gps (posición de los satélites)


Hemos visto que podemos calcular nuestra posición a partir de la posición conocida de cuatro o más satélites, pero, ¿cómo podemos conocer la posición de un satélite que se encuentra a más de 20.000 km de distancia y que da una vuelta a la tierra cada 12 horas?
Dado que en el espacio no hay atmósfera, podemos introducir satélites en órbitas invariables que seguirán modelos matemáticos previamente calculados. De este modo, siempre podremos conocer la posición de cada uno de los satélites en un momento dado. Para ello, los receptores GPS disponen de unos almanaques programados que indican en qué lugar del espacio se encuentran los satélites en cada momento.
A pesar de que estas órbitas son suficientemente exactas, las estaciones de tierra comprueban constantemente sus posiciones. Para ello emplean radares muy precisos que permiten medir la posición y velocidad exactas, y calculan los posibles errores. Estos errores se denominan "errores de efemérides" ya que afectan a la órbita de los satélites o efemérides.
Estos errores se producen como consecuencia del efecto de las atracciones gravitacionales de la Luna y el Sol o por la presión de la radiación solar en los satélites. A pesar de todo, estos errores son mínimos, si bien, si queremos un sistema preciso, debemos tenerlos en cuenta.Una vez detectados, se retransmiten estos errores a los satélites para que éstos puedan incluir la nueva información en las señales emitidas. De este modo, la señal que incluye el PRC es algo más que una señal de sincronizado, es también una señal que también contiene información sobre la efemérides.

Como funciona el gps (sincronización)

Ya hemos comentado que la precisión y la exactitud en la medida de la distancia a los satélites son cruciales para el perfecto funcionamiento del GPS. Para ello, debemos disponer de relojes enormemente precisos, ya que una milésima de segundo a la velocidad de la luz puede suponer un error de 300 km. Para los satélites esto no supone un problema ya que cada uno de ellos dispone de un reloj atómico en su interior. Aunque su nombre dé a entender que funciona con energía atómica, este reloj no utiliza este tipo de energía. Su nombre proviene del hecho que utiliza las oscilaciones de un átomo determinado como "metrónomo".Lamentablemente, dado el coste y el tamaño, es imposible disponer de un reloj atómico en un receptor. Para solucionar este problema, los ingenieros que desarrollaron el GPS tuvieron la brillante idea de incluir (simular) un "reloj atómico" mediante la recepción de la señal de un satélite extra. La recepción de una señal extra permite que el receptor pueda calcular los errores producidos en la medición y comparación del tiempo y compensarlos, de ahí la necesidad de emplear cuatro satélites para la medición de nuestra posición, en lugar de tres como sería de esperar en un sistema tridimensional. Gracias a este "reloj atómico", los receptores pueden emplearse para algo más que el cálculo de posiciones, como la calibración de otros sistemas de navegación, la sincronización de sistemas informáticos u otros equipos, o la sincronización con el horario universal, entre otros.

Como funciona el gps (trilateración)

Como ya se ha mencionado en el primer capítulo, el sistema está formado por 24 satélites y cinco estaciones terrestres, además del receptor del usuario. Estos satélites, a partir de la información incluida en ellos y la que reciben de las estaciones, generan una señal que transmiten a los receptores. Una vez los receptores reciben esta señal, calculan la posición.
La base para determinar la posición de un receptor GPS es la trilateración a partir de la referencia proporcionada por los satélites en el espacio. Para llevar a cabo el proceso de trilateración, el receptor GPS calcula la distancia hasta el satélite midiendo el tiempo que tarda la señal en llegar hasta él. Para ello, el GPS necesita un sistema muy preciso para medir el tiempo. Además, es preciso conocer la posición exacta del satélite. Finalmente, la señal recibida debe corregirse para eliminar los retardos ocasionados.
Una vez que el receptor GPS recibe la posición de al menos cuatro satélites y conoce su distancia hasta cada uno de ellos, puede determinar su posición superponiendo las esferas imaginarias que generan.

miércoles, 12 de agosto de 2009

El sistema está formado por 24 satélites. Estos satélites, a partir de la información incluida en ellos y la que reciben de las estaciones, generan una señal que transmiten a los receptores. Una vez los receptores reciben esta señal, calculan la posición.
La base para determinar la posición de un receptor GPS es la trilateración. Para llevar a cabo el proceso de trilateración, el receptor GPS calcula la distancia hasta el satélite midiendo el tiempo que tarda la señal en llegar hasta él. Una vez que el receptor GPS recibe la posición de al menos cuatro satélites y conoce su distancia hasta cada uno de ellos, puede determinar su posición.

Historia del GPS


A comienzos de los años 60, la armada y la fuerza aérea norteamericanas decidieron crear un sistema de localización para su armamento, especialmente el nuclear. Este sistema debía ser muy preciso, estar disponible de manera continua, no verse afectado por las condiciones atmosféricas, funcionar en cualquier lugar del globo y de coste bajo.Tras realizar inversiones multimillonarias (14.000 millones de dólares hasta 1994), investigar diversos proyectos previos y diseñar los satélites que integrarían el sistema, en 1989 se lanzaron los primeros satélites que formaban el sistema. El lanzamiento de los satélites originales prosiguió hasta 1994, cuando se lanzó el 24º satélite del sistema. Estos primeros satélites fueron fabricados por la empresa norteamericana Rockwell.
Como sistema diseñado para la guerra, no fue hasta la guerra del Golfo Pérsico, en 1991 cuando el sistema se sometió a situación de combate. El GPS cumplió su papel a la perfección. De hecho, en alguna ocasión algún general llegó a comentar que, junto con la visión nocturna, el GPS fue el elemento de equipamiento relevante en esta guerra.Afortunadamente, el uso del GPS no es exclusivo del ejército norteamericano. Tras un incidente internacional ocasionado en 1983, el entonces presidente de los EE.UU., Ronald Reagan, anunció que el GPS también estaría disponible para la comunidad civil internacional, si bien el sistema tendría una precisión inferior a la que gozaba el ejército norteamericano. En 2000, Bill Clinton eliminó esta restricción y actualmente se logran precisiones de hasta 15 metros en usos civiles. A pesar de ello, y dado que el sistema está bajo el control, entre otros, del Departamento de Defensa norteamericano, los receptores no pueden ser capaces de funcionar a más de 18.000 metros de altitud ni a más de 900 nudos (1.667 km/hora) de velocidad. Además, el servicio puede verse sometido a restricciones temporales.

Introducción al GPS



El Global Positioning System (GPS) o Sistema de Posicionamiento Global (más conocido con las siglas GPS, aunque su nombre correcto es NAVSTAR-GPS ) es un Sistema Global de Posicionamiento por Satélite. (GNSS) que permite determinar en todo el mundo la posición de un objeto, una persona, un vehículo o una nave, con una precisión hasta de centímetros, usando GPS diferencial, aunque lo habitual son unos pocos metros. Aunque su invención se atribuye a los gobiernos francés y belga, el sistema fue desarrollado e instalado, y actualmente es operado por el Departamento de Defensa de los Estados Unidos.